Abstract

In the pursuit of a more sustainable future and to combat the environmental impact of fossil fuels, green hydrogen production through water electrolysis is gaining traction. While noble metals currently dominate electrocatalyst design, their expense limits widespread adoption. This study proposes a solution by outlining a method for designing efficient and affordable electrocatalysts based on non-precious metals. Herein, we introduce a novel S-incorporated Ni2O3 supported on biowaste-derived activated carbon (S-Ni2O3@AC) synthesized from pumpkin shells. This facile and sustainable approach utilizes readily available resources. The S-Ni2O3@AC nanocomposite demonstrates excellent HER performance with low overpotential and high durability. This is attributed to a high surface area of the composite, fast charge transfer, optimal hydrogen adsorption, and lowered energy barrier for water dissociation facilitated by sulfur incorporation, which is demonstrated by density functional theory (DFT) calculations. This research paves the way for cost-effective and sustainable hydrogen evolution electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.