Abstract

Boron (B) is an essential trace element that plays a vital role in metabolic and physiological functions of higher plants. The adequate supply of B is important for plant growth and development. Grafting is a technique used to improve the ion uptake and plant growth. In this study, a commercial watermelon cultivar “Zaojia 8424” [Citrullus lanatus (Thunb.) Matsum. and Nakai.] was grafted onto pumpkin (Cucurbita maxima × Cucurbita moschata) rootstock cv. “Qingyan Zhenmu No.1” with an aim to investigate the response of grafted plants to different levels of B supply (0.25 μM, 25 μM and 75 μM B) in the nutrient solution. Self-grafted watermelon plants were used as control. Pumpkin rootstock improved the plant growth, chlorophyll and carotenoid contents, photosynthetic assimilation, stomatal conductance, transpiration rate, B accumulation and up-regulated the expression of NIP5;1, NIP6;1 and B transporter (BOR2, BOR4) genes in the roots and leaves at 25 μM B compared with self-grafted watermelon plants. Moreover, pumpkin rootstock reduced the oxidative stress and cell damage by reducing H2O2 and MDA contents, and down-regulating the expression of PDCD2-1, PDCD2-2 genes. Moreover, it enhanced the antioxidant activity of watermelon by up-regulating the expression of SOD1, SOD2, CAT2-1, and CAT2-2 genes. Based on these observations, we concluded that pumpkin rootstock has ability to improve the plant growth of watermelon by enhancing the B uptake. This study may help adjust the B concentration in the nutrient medium for watermelon production where pumpkin grafted plants are utilized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call