Abstract

We consider the single-file motion of colloidal particles interacting via short-range repulsion and placed in a traveling wave potential that varies periodically in time and space. Under suitable driving conditions, a directed time-averaged flow of colloids is generated. We obtain analytic results for the model using a perturbative approach to solve the Fokker-Planck equations. The predictions show good agreement with numerical simulations. We find peaks in the time-averaged directed current as a function of driving frequency, wavelength, and particle density and discuss possible experimental realizations. Surprisingly, unlike a closely related exclusion dynamics on a lattice, the directed current in the present model does not show current reversal with density. A linear response formula relating current response to equilibrium correlations is also proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.