Abstract

The aim of this work was to investigate the hemodynamic influence of the change of pump rate on the cardiovascular system with consideration of heart rate and the resonant characteristics of the arterial system when a reliable synchronous triggering source is unavailable. Hemodynamic waveforms are recorded at baseline conditions and with the pump rate of left ventricular assist device (LVAD) at 55, 60, 66, and 70 beats per minute for four test conditions in a mock circulatory system. The total input work (TIW) and energy equivalent pressure (EEP) are calculated as metrics for evaluating the hemodynamic performance within different test conditions. Experimental results show that TIW and EEP achieve their maximum values, where the pump rate is equal to the heart rate. In addition, it demonstrates that TIW and EEP are significantly affected by changing pump rate of LVAD, especially when the pump rate is closing to the natural frequency of the arterial system. When a reliable synchronous triggering source is not available for LVAD, it is suggested that selecting a pump rate equal to the resonant frequency of the arterial system could achieve better supporting effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.