Abstract

This paper offers a novel approach for computing globally optimal solutions to the pump scheduling problem in drinking water distribution networks. A tailored integer linear relaxation of the original non-convex formulation is devised and solved by branch and bound where integer nodes are investigated through non-linear programming to check the satisfaction of the non-convex constraints and compute the actual cost. This generic method can tackle a large variety of networks, e.g. with variable-speed pumps. We also propose to specialize it for a common subclass of networks with several improving techniques, including a new primal heuristic to repair near-feasible integer relaxed solutions. Our approach is numerically assessed on various case studies of the literature and compared with recently reported results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call