Abstract

Free-standing nanoporous graphene was hydrogenated at about 60 at.% H uptake, as determined by the emerging of the sp3 bonding component in the C 1s core level investigated by high-resolution X-ray photoelectron spectroscopy (XPS). Fully unsupported graphane was investigated by XPS under optical excitation at 2.4 eV. At a laser fluence of 1.6 mJ/cm2, a partial irreversible dehydrogenation of the graphane was observed, which could be attributed either to the local temperature increase or to a photo-induced softening of the H-to-C stretching mode. The sub-ns dynamics of the energy shift and peak broadening of the C 1s core level revealed two different decay constants: 210 ps and 130 ps, respectively, the former associated with photovoltage dynamics and the latter with thermal heating on a time scale comparable with the synchrotron temporal resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call