Abstract

Atomic superfluids confined in a ring provide a remarkable paradigm for quantized circulation. Very recently, a technique based on cavity optomechanics has been proposed [Kumar et al., Phys. Rev. Lett. 127, 113601 (2021)] for sensing and manipulating the rotation of a bosonic ring condensate with minimal destruction, in situ and in real time. Here, we theoretically investigate other coherent interference effects that can be supported by the proposed configuration. Specifically, in the presence of a strong control beam, we analyze the influence of atomic rotation on the transmission spectrum of a weak probe laser through a cavity containing a ring condensate. We present a detailed study of the resulting narrow probe transmission profiles and group delay and show that they can be tuned by means of persistent currents. Our results explore a facet of rotating matter waves and are relevant to applications such as atomtronics, sensing, and information processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call