Abstract
Time-resolved "pump-probe" ab initio molecular dynamics studies are constructed to probe the stability of reaction intermediates, the mechanism of energy transfer, and energy repartitioning, for moieties involved during the interaction of volatile organic compunds with hydroxyl radical. These systems are of prime importance in the atmosphere. Specifically, the stability of reaction intermediates of hydroxyl radical adducts to isoprene and butadiene molecules is used as a case study to develop novel computational techniques involving "pump-probe" ab initio molecular dynamics. Starting with the various possible hydroxyl radical adducts to isoprene and butadiene, select vibrational modes of each of the adducts are populated with excess energy to mimic the initial conditions of an experiment. The flow of energy into the remaining modes is then probed by subjecting the excited adducts to ab initio molecular dynamics simulations. It is found that the stability of the adducts arises directly due to the anhormonically driven coupling of the modes to facilitate repartitioning of the excess vibrational energy. This kind of vibrational repartitioning has a critical influence on the energy density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.