Abstract
This study demonstrates the significant impact of market sentiment, derived from social media, on the daily price prediction of cryptocurrencies in both bull and bear markets. Through the analysis of approximately 567 thousand tweets related to twelve specific cryptocurrencies, we incorporate the sentiment extracted from these tweets along with daily price data into our prediction models. We test various algorithms, including ordinary least squares regression, long short-term memory network and neural hierarchical interpolation for time series forecasting (NHITS). All models show better performance once the sentiment is incorporated into the training data. Beyond merely assessing prediction error, we scrutinise the model performances in a practical setting by applying them to a basic trading algorithm managing three distinct portfolios: established tokens, emerging tokens, and meme tokens. While NHITS emerged as the top-performing model in terms of prediction error, its ability to generate returns is not as compelling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.