Abstract

A pump source is one of the essential prerequisites in order to achieve lasing in a system, and, in most cases, a stronger pump leads to higher laser power at the output. However, this behavior may be suppressed if two pump beams are used. In this work, we show that lasing around the 1600 nm band can be suppressed completely if two pumps, at wavelengths of 980 nm and 1550 nm, are applied simultaneously to an Yb:Er-doped microlaser, whereas it can be revived by switching one of them off. This phenomenon can be explained by assuming that the presence of one pump (980 nm) changes the role of the other pump (1550 nm); more specifically, the 1550 nm pump starts to consume the population inversion instead of increasing it when the 980 nm pump power exceeds a certain value. As a result, the two pump fields lead to a closed-loop transition within the gain medium (i.e., the erbium ions). This study unveils an interplay similar to coherence effects between different pump pathways, thereby providing a reference for designing the laser pump, and may have applications in lasing control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.