Abstract
A number of experiments on the plasma-vapor gasification of brown coals of three types have been carried out using an experimental plant with an electric-arc reactor of the combined type. On the basis of the material and heat balances, process parameters have been obtained: the degree of carbon gasification (ζc), the level of sulfur conversion into the gas phase (ζs), the synthesis gas concentration (CO+Hz) in the gaseous products, and the specific power consumption for the gasification process. The degree of gasification was 90.5-95.0%, the concentration of the synthesis gas amounted to 84.7–85.7%, and the level of sulfur conversion into the gas phase was 94.3–96.7%. Numerical study of the process of plasma gasification of coals was carried out using a mathematical model of motion, heating, and gasification of polydisperse coal particles in an electric-arc reactor of the combined type with an internal heat source (arc). The initial conditions for a conjugate system of nonlinear differential equations of the gas dynamics and kinetics of a pulverized coal stream interacting with the electric arc and oxidizer (water vapor) agree with the initial conditions of the experiments. The computation results satisfactorily correlate with the experimental data. The mathematical model can be used for the determination of reagent residence time and geometrical dimensions of the plasma reactor for the gasification of coals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.