Abstract

Reactions of pulverized coal injection (PCI) in a blast furnace were simulated using a drop tube furnace (DTF) to investigate the burnout behavior of a number of coals and coal blends. For the coals with the fuel ratio ranging from 1.36 to 6.22, the experimental results indicated that the burnout increased with decreasing the fuel ratio, except for certain coals departing from the general trend. One of the coals with the fuel ratio of 6.22 has shown its merit in combustion, implying that the blending ratio of the coal in PCI operation can be raised for a higher coke replacement ratio. The experiments also suggested that increasing blast temperature was an efficient countermeasure for promoting the combustibility of the injected coals. Higher fuel burnout could be achieved when the particle size of coal was reduced from 60–100 to 100–200 mesh. However, once the size of the tested coals was in the range of 200 and 325 mesh, the burnout could not be improved further, resulting from the agglomeration of fine particles. Considering coal blend reactions, the blending ratio of coals in PCI may be adjusted by the individual coal burnout rather than by the fuel ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call