Abstract

Faster than Nyquist signaling increases the spectral efficiency of pulse amplitude modulation by accepting intersymbol interference, where an equalizer is needed at the receiver. Since the complexity of an optimal equalizer increases exponentially with the number of the interfering symbols, practical truncated equalizers assume shorter memory. The power of the resulting residual interference depends on the transmit filter and limits the performance of truncated equalizers. In this paper, we use numerical optimizations and the prolate spheroidal wave functions to find optimal time-limited pulses that achieve minimum residual interference. Compared to root raised cosine pulses, the new pulses decrease the residual interference by an order of magnitude, for example, a decrease by 32 dB is achieved for an equalizer that considers four interfering symbols at 57% faster transmissions. As a proof of concept, for the 57% faster transmissions of binary symbols, we showed that using the new pulse with a 4-state equalizer has better bit error rate performance compared to using a root raised cosine pulse with a 128-state equalizer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call