Abstract

Our report is the first example describing the successful synthesis of magnetic Fe3O4 nanoparticles (NPs), for which we used pulsed-laser induced photolysis (PLIP). Compared with the previous method of using pulsed-laser ablation of a target, or strong energy of pulsed-laser light to decompose precursors in generating a solvated-ion reaction, the PLIP method used here is dependent on hydrogen peroxide (H2O2) to generate a hydrolysis reaction. Energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) were used to demonstrate the Fe3O4 crystalline structure of the synthesized NPs. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images revealed that the average size of the NPs was about 20–50 nm. Regarding their magnetic characteristics, the synthesized NPs exhibited a saturation magnetization of 5.62 emu/g, remanence of 3.82 emu/g, and coercive force of 49.8 Oe. The photocatalytic experiments confirmed that the synthesized magnetic Fe3O4 NPs have visible light-degradation effects based on their ability to photocatalytically degrade methylene blue (MB). The MB degradation efficiency was 60–80% under white-light exposure for 180 min. This study presents a new route for synthesizing magnetic Fe3O4 NPs for their potential use in photocatalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call