Abstract

With increasing production and consumption of chicken, it is appropriate to investigate the functionality and effectiveness of microbial reduction interventions and the qualitative effects they have on food. The effectiveness of pulsed ultraviolet (PUV) light applied to chicken on a moving conveyor was evaluated for inactivation of Escherichia coli on the surface of raw boneless/skinless (B/S) chicken breasts, B/S chicken thighs, and bone-in/skin-on chicken thighs. The conveyor height (distance from the flashlamp) and speed were set to deliver total energy fluences of 5, 10, 20, and 30 J/cm2 to the surface of the products. The product type by energy fluence interaction was significant (P = 0.015) for microbial reduction of E. coli. Exposure to PUV light for 5 and 30 J/cm2 resulted in Log10 reductions of 0.29 and 1.04 for B/S breasts, 0.34 and 0.94 for B/S thighs, and 0.10 and 0.62 for bone-in/skin-on thighs, respectively. Lipid oxidation and changes in color of chicken samples were evaluated after 30 J/cm2 of PUV light treatment. Lipid oxidation was measured at 0, 24, 48, and 120 h after the treatment. PUV light treatment did not produce significant (P > 0.05) changes in lipid oxidation values for each product type. International Commission on Illumination L*, a*, and b* parameters were used to report lightness and color of samples before and after treatment for B/S breasts and thighs and bone-in/skin-on thighs. Color parameters were not significantly (P > 0.05) affected by PUV light treatments. In conclusion, this study indicates that PUV light applied to the surface of raw chicken parts on a moving conveyor is an effective surface antimicrobial treatment while inducing minimal change in quality of the product over a 5-d storage period under aerobic conditions.

Highlights

  • Raw chicken provides all of the necessary conditions needed to harbor and support the growth of spoilage and pathogenic microorganisms during refrigerated transportation and storage

  • The Log10 reduction of E. coli K12 nalidixic acid and streptomycin sulfate–resistant (NSR) on the surface of B/S chicken thigh and breasts and bone-in/skinon chicken thighs after treatment by the pulsed ultraviolet (PUV) light on a moving conveyor was assessed at energy fluence values of 5, 10, 20, and 30 J/cm2 (Table 1)

  • To the best of our knowledge, this study is the first to report the effects of PUV light applied to chicken parts on a moving conveyor

Read more

Summary

Introduction

Raw chicken provides all of the necessary conditions needed to harbor and support the growth of spoilage and pathogenic microorganisms during refrigerated transportation and storage. The most prevalent foodborne pathogens associated with raw chicken include Salmonella and Campylobacter (Haughton et al, 2011; United States Department of Agriculture [USDA], 2012; McLeod et al, 2018). A report by the Foodborne Disease Active Surveillance Network indicated that the numbers of foodborne illness outbreaks caused by Salmonella and Campylobacter reported in the United States in 2012 were 535 and 23, respectively (Centers for Disease Control and Prevention [CDC], 2017b). Between 1988 and 1992, the CDC reported 40 foodborne illness outbreaks associated with chicken, which accounted for 1.65% of all foodborne illness outbreaks in the United States (CDC, 1996). Between 2009 and 2015, the CDC reported a total of 123 chicken-associated foodborne illness outbreaks, which accounted for 9.60% of all outbreaks in the United States (CDC, 2017a; Dewey-Mattia et al, 2018). The apparent rise in chicken-associated outbreaks emphasizes the need to identify effective interventions to reduce the presence of the pathogens on chicken

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call