Abstract

Objective: Pulsed ultrasound has been proposed as a tool to enhance ocular drug delivery, but its effects on drug potency are not well understood. Doxorubicin-HCl and cisplatin are two drugs commonly used to treat ocular melanoma. We report the effects of pulsed ultrasound on the cytotoxicity of doxorubicin-HCl and cisplatin in vitro. Methods: Cultured human retinal pigment epithelium cells (ARPE-19) were treated with doxorubicin-HCl or cisplatin in the presence or absence of ultrasound. MTT and Trypan blue assays were performed at 24 and 48 h post treatment to assess cell metabolism and death. Results: Cells treated with ultrasound plus doxorubicin-HCl demonstrated a significant decrease in metabolism compared with cells treated with doxorubicin-HCl alone. In contrast, cells treated with ultrasound plus cisplatin exhibited a significant increase in metabolism compared with cells treated with cisplatin alone for 48 h. Cells treated with cisplatin and pretreated with ultrasound (US–Cis) exhibited a significant decrease in metabolism. Cell death was similar in doxorubicin- and cisplatin-treated cells with and without ultrasound. Conclusion: Pulsed ultrasound enhances the cytotoxicity of doxorubicin-HCl at 24 and 48 h post treatment but abrogates cisplatin toxicity 48 h post treatment. This suggests ultrasound modulates cell–drug interactions in a drug-specific manner. These findings may influence the future development of ultrasound-assisted ocular drug delivery systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call