Abstract

Inactivation of Escherichia coli is examined using ultra-violet (UV) radiation from a pulsed xenon flashlamp. The light from the discharge has a broadband emission spectrum extending from the UV to the infrared region with a rich UV content. The flashlamp provides high-energy UV output using a small number of short-duration pulses (30 μs). The flashlamp is used with a monochromator to investigate the wavelength sensitivity of E. coli to inactivation by the pulsed UV light. Using 8 nm wide pulses of UV radiation, the most efficient inactivation is found to occur at around 270 nm and no inactivation is observed above 300 nm. A pyroelectric detector allows the energy dose to be determined at each wavelength, and a peak value for E. coli population reduction of 0.43 log per mJ/cm 2 is measured at 270 nm. The results are compared with the published data available for continuous UV light sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call