Abstract

The analytic expressions are derived for the turbulent broadening, the long-term temporal broadening, the acquisition probability of single-pulse and the transmittance probability density of a pulsed space-time Bessel photon-beam propagating along a slant path in weak non-Kolmogorov atmospheric turbulence, based on the assumption of a pulsed Bessel beam with the initial Gaussian temporal shape of pulse and diffraction-free spatial distribution. It is shown that the turbulent broadening and the long-term temporal broadening are the nolinear-increase functions of the index of non-Kolmogorov turbulence and the effect of non-Kolmogorov index on the acquisition probability of single-pulse can be approximatively described by a Gaussian function with a peak value at non-Kolmogorov index close to 3.7 for the case of the input half-pulse width greater than picosecond (ps). The transmittance of probability density is decreasing as the increasing of the structure constant of the index of refraction, the zenith angle of communication channel, the propagation path and the pulse broadening. There is turbulent diffraction for Bessel beam propagation in turbulent atmosphere, but its free-space diffraction-free characteristic is reservation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call