Abstract
We propose a novel strategy to reconstruct the quantum state of dark systems, i.e., degrees of freedom that are not directly accessible for measurement or control. Our scheme relies on the quantum control of a two-level probe that exerts a state-dependent potential on the dark system. Using a sequence of control pulses applied to the probe makes it possible to tailor the information one can obtain and, for example, allows us to reconstruct the density operator of a dark spin as well as the Wigner characteristic function of a harmonic oscillator. Because of the symmetry of the applied pulse sequence, this scheme is robust against slow noise on the probe. The proof-of-principle experiments are readily feasible in solid-state spins and trapped ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.