Abstract

This paper addresses the use of energy storage and high-speed power generation to support high power loads and at the same time reduce fuel consumption of DDG51 Arleigh Burke class destroyers. Energy storage can supply pulsed energy loads, and can be used to improve reliability and power quality by stabilizing the grid. It can also serve to improve ship efficiency by acting as an uninterruptible power supply, enabling single generator operation with a single gas turbine operating closer to its peak efficiency, rather than running constantly two generator sets at light load. In case of failure, the energy storage unit provides power for critical loads until a second generator set can be brought online. Based on system modeling, fuel savings projections, and ship integration studies, a flywheel energy storage system was found to be a viable approach to realizing significant fuel savings on the DDG51 ship service generation system. Using a typical load profile, fuel savings in excess of US$1 million per year per ship can be expected. The particular flywheel energy storage system of this study can mitigate system transients and provide up to 10-minute ride-through to enable multiple start attempts on the second gas turbine generator set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.