Abstract
A series of experiments has been carried out at the linear current flow densities up to 7 MA/cm, aimed at physical modeling of magnetically insulated transmission line of the Inertial Fusion Energy reactor based on the fast Z-pinch. The goals of these experiments were as follows: a) the study of the near-electrode plasma and its effect on the energy transfer; b) determination of the critical MITL parameters to foresee possible restrictions on the efficiency of IFE reactor. The loads were fabricated on the base of foam as profiled cylinders of (3–5) mm in diameter and with 30 mg/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> density, with the neck in its central part of about 1 mm in diameter. The goal of this series of experiments was the investigation of plasma dynamics in the Z-pinch neck and the mechanism of neutron generation accompanying the current-driven implosion. The prospects of application plasma opening switches as output cascades of pulsed power generators of megajoule range is studied on base of RS-20 machine. By using the programmed fill the diode gap by plasma, the suppression of pre-pulse has been achieved and shortening the pulse from 40 μs to 100 ns has been obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.