Abstract

AbstractHigh surface functional groups concentration, excellent dynamical stability and mechanical properties are ideal for biomedical plasma polymers. Herein, we report a simple and effective approach to fabricating such an ideal plasma polymeric allylamine film on 316L stainless steel (SS) by pulsed plasma polymerization. The experimental results show that the concentration of the primary amine groups (NH2/C) of the plasma polymeric allylamine film was 2.4 ± 0.4%. The plasma polymeric allylamine film possesses not only high surface NH2 concentration, but also high cross‐linking degree and close‐knit network structure that could well resist hydrolysis, and dissolution in the aqueous solution. Furthermore, the plasma polymeric allylamine film was used as a stent coating that shows a good resistance to the deformation behaviour of compression and expansion of the stent.magnified image

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.