Abstract
The authors have developed methods to enhance albumin binding to modified silicone rubber (SR) films. An intermediate bifunctional coupling agent, polyvinylmethyl siloxane-comethyl-1-ethanol siloxane (PVMS-CO-MES), is prepared from a cyclic tetramer, vinyl-methyl siloxane, by an oxymercuration-demercuration reaction, and cross-linked to silicone rubber under mild peroxide catalytic conditions. Free mercury on the surface was obtained under many reaction conditions and is shown to materially enhance 125I-labeled albumin binding. The mechanism most likely occurs via disulfide bond breakage, protein denaturation, and aggregation. The possible role of iodine-mercury bonds, an artefactual source, is ruled out with the aid of total internal reflectance-fluorescence measurements of the albumin adsorption rate constant. Although in situ albumin aggregation via disulfide bond breakage is a potentially attractive method for biocompatible protein gel formation, the toxicity of mercury makes the current method unfit for clinical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.