Abstract

Pulsed Photothermal Laser Deflection (PLD) is developed to make temporally and spatially resolved measurements of NO2 and smoke. The rapid response PLD signal is produced when a HeNe probe beam is deflected by a thermal lens produced by a pulsed XeCl-excimer laser pumped dye laser. The fast time response (≈30 ns) and good spatial resolution make the PLD method a candidate for future in situ measurements in turbulent engine exhausts. The PLD signals, measured in a sample cell, exhibit a linear response for NO2 concentrations from 3 ppm to 208 ppm and for smoke concentrations from 0.3 mg/m3 to 10 mg/m3. With a low pulse energy of ≈4 mJ, single-shot PLD measurements in a sample cell have accuracies of ± 14 ppm for NO2 indicating accuracies of ±0.7 mg/m3 for smoke. With increased pulse energy and multi-shot averaging, sensitivities of ± 0.4 ppm of NO2 or ± 20 µg/m3 of smoke are expected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.