Abstract

By alternatively operating two pulsed optically pumped (POP) atomic clocks, the dead time in a single clock can be eliminated, and the local oscillator can be discriminated continuously. A POP atomic clock with a zero-dead-time (ZDT) method is then insensitive to the microwave phase noise. From τ = 0.01 to 1 s, the Allan deviation of the ZDT-POP clock is reduced as nearly τ-1, which is significantly faster than τ-1/2 of a conventional clock. During 1-40 s, the Allan deviation returns to τ-1/2. Moreover, the frequency stability of the ZDT-POP clock is improved by one order of magnitude compared with that of the conventional POP clock. We also analyze the main factors that limit the short-term frequency stability of the POP atomic clock.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.