Abstract
The nuclear spin dynamics in nuclear spin ordered solid3He in low magnetic fields on the melting curve has been studied by pulsed NMR down to 0.6 mK. The free induction decay signals (FID) were measured in single crystals of solid3He at three operating frequencies of 920, 1380, and 1840 kHz. The FIDs were nonexponential and dependent on the rf pulse strength βp≡γH1tw, where γ is the gyromagnetic ratio,H1 is the rf field strength, andtw is the pulse width. At small βp they decayed almost linearly in time with a small exponential tail at the end. When βp was further increased they became shorter and neither exponential nor linear in time. At large βp they decayed very rapidly and sometimes could not be observed at all because of the dead time of the NMR detection system. Such behavior of the FID was observed in many different single crystals in the given temperature range at 920 kHz. Tsubota and Tsuneto have shown by solving the nonlinear equations of motion numerically that the motion of the nuclear spin becomes chaotic when the tipping angle exceeds a critical value. Comparing their result with our experimental results, we concluded that some of the results of the rapid decay of the FID at large βp might be attributed to the onset of the chaotic motion. At 1840 kHz it is expected that the nonlinear effects in the equations of motion become less effective than that at 920 kHz. In fact, at this operating frequency the FIDs even at large βp and the tipping angle-dependent frequency shift could be observed. These frequency shifts were in rather good agreement with Namaizawa's theory provided an effective tipping angle was taken into account.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.