Abstract

Single-crystalline silicon is implanted by magnesium ions at room temperature and then subjected to pulsed ion-beam annealing. The surface morphology, crystallinity, and optical properties of the implanted silicon are studied before and after annealing. It is shown that ion implantation makes a near-surface layer of silicon about 0.1 m thick amorphous. Pulsed nanosecond ion-beam annealing results in silicon recrystallization and the formation of crystalline magnesium silicide precipitates. Optimal values of the implantation dose and pulse energy density for the formation of magnesium silicide precipitates in the near-surface layer of silicon are found.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.