Abstract

This research work aims to explore the feasibility of applying electrochemical machining (ECM) to micromachining. An experimental setup for micro-ECM has been developed. Lower machining voltage, lower concentration of passivity electrolyte, high-frequency short-pulse power supply and micro tool electrode rotating at high speed have been synthetically adopted to localize the dissolution area in micro-ECM, so the machining gap can be kept at about 10 μm and the better resolution of machined shape is achieved. A micro-hole with 45μm diameter is drilled on the stainless steel foil with 100μm thickness. A new approach of fabricating microstructure by micro-ECM milling with a simple micro electrode is proposed, and the micro beam with width of about 50μm which has high precision is fabricated by micro-EC milling on the stainless steel foil (1Cr18Ni9Ti) with 300μm thickness. A mathematics model has been established, which can be used to simulate the process of shaping workpieces in the process of micro-ECM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call