Abstract
Magnetic field-induced transformation from paramagnetic austenite to ferromagnetic martensite in an Fe-21Ni-4Mn (wt%) alloy with dual martensitic transformation kinetics has been studied by magnetization measurement and optical microscopy, applying a pulsed ultra-high magnetic field. As a result, the following were found. A magnetic field higher than a critical one is needed to induce the martensitic transformation above Ms. The critical magnetic field increases with increasing temperature, and when plotted against the temperature difference (ΔT) from Ms, it lies on a straight line not passing through the origin. This result and thermodynamical analysis suggest that pulsed magnetic field strongly promotes the athermal martensitic transformation and restrains the isothemal one. The influence of magnetic field on martensitic transformation in the present Fe-Ni-Mn alloy is mainly due to Zeeman effect. The entropy change for athermal transformation at Ms, ΔSΔMsat is obtained to be 4.13 J/mol·K. The amount of magnetic field-induced martensites increases linearly with the maximum strength of pulsed magnetic field. Lath, plate and butterfly martensites are formed under magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.