Abstract

A nanoscale heterogeneous environmental catalyst, FePC alloy, was successfully fabricated by a single-roller melt spinning technique. The prepared catalyst had a biphasic disorder structure with α-Fe nanocrystallites embedded in the amorphous matrix. The pulsed laser process effectively improved the nanoscale heterogeneity degree, thermodynamic properties, surface photothermal conversion, corrosion resistance and hydrophilicity of the catalyst. The 60 W pulsed laser processing induced the nanocrystalline Fe3P precipation in the catalyst, which is transformed from α-Fe and amorphous matrix, promoting the electron donation rate of the galvanic cell system; therefore, the 60 W pulsed laser processed catalyst exhibited an excellent catalytic performance, such as a high k value, strong TOC removal rate and low activation energy. In addition, compared with other oxide, metallic crystal and metallic glass catalysts, this catalyst exhibited a much higher surface area-normalized rate constant kSA. The reusability test showed that this catalyst exhibited a reliable stability, and its decolorization efficiency at the 20th cycle still remained above 95 %; moreover, the parameter analysis showed that it had a strong adaptability in the persulfate system. This study provides a new strategy for designing and fabricating the efficient, low-cost and environmental catalysts for dye wastewater degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.