Abstract

Rapidly growing attention is being recently directed towards the investigation of the ionic conducting properties of oxide film hetero-structures. Experimental evidence has been reported showing that interfacial phenomena at hetero-phase interfaces give rise to faster ion conduction pathways than the bulk or homo-phase interfaces. Nonetheless, a deeper understanding of the interface transport properties is still needed to exploit these effects. In this work we have investigated the growth mechanism of different superlattices fabricated by pulsed laser deposition (PLD) coupling doped and undoped cerium and zirconium oxides. Single crystalline MgO wafers were selected as deposition substrates. The superlattice structures were obtained by means of a thin buffer layer of SrTiO3 (STO). The growth mechanism was investigated by reflection high energy electron diffraction (RHEED) and X-ray diffraction (XRD) analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.