Abstract

Overcoming the structural instability of a single-phase thin-film-processed cathode by replacing it with a cathode-electrolyte composite thin-film cathode is presented. The effect of the deposition materials change from a single-phase lanthanum strontium cobaltite (LSC) to a LSC-gadolinia-doped ceria (GDC) composite and the influence of the variations of pulsed laser deposition (PLD) parameters on thin-film cathode microstructures are discussed. By introducing the cathode-electrolyte composite concept to the thin-film deposition and employing a gradient cathode structure, the adhesion of the interface between the thin-film cathode and the electrolyte could be enhanced and as a result, much improved stability of high-temperature performance and structure of the thin-film-processed cathode could be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.