Abstract
We report pulsed laser deposition (PLD) synthesis of epitaxial and polycrystalline monoclinic bismuth vanadate (BiVO4, BVO) thin films. X-ray diffraction (XRD), atomic force microscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy were used to characterize the samples. Epitaxial, c-axis oriented growth was achieved using single crystal yttria-stabilized zirconia (100), a substrate temperature of 575–600 °C, and an oxygen pressure of 7.8 mTorr. The volatility of Bi necessitated a large excess (Bi:V = ∼6:1) of this element in the ceramic targets to obtain stoichiometric films. XRD confirmed a BVO (001)||YSZ (001) and BVO [100]||YSZ [100] epitaxial relationship. Film growth was 3-D, and the morphology was discontinuous, consisting of irregular, smooth grains. Additionally, dense, continuous polycrystalline films were deposited on fluorine-doped tin oxide (FTO) on glass substrates at room temperature with stoichiometric targets and postdeposition annealing in air. Evaluation of these samples as photoanodes yielded photocurrents of ∼0.15 and ∼0.05 mA cm–2 at 1.23 V vs RHE under backside AM1.5G illumination with and without a hole scavenger (Na2SO3), respectively. We argue that the photocurrents are due to the high oxygen content inherent in the PLD process and suggest that these continuous films may be well-suited to investigating oxygen-related defects in BVO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.