Abstract

Abstract The influence of a subnanosecond pulsed laser-based scribing of copper (Cu) and aluminum (Al) in salt solutions (NaCl and KCl) on the formation of microchannels is reported. This technique allows laser scribing along with selective etching of Cu and Al thin films. The focused laser beam can elevate the surface temperature on the sample and hence the chemical reaction rate, resulting in combined ablation with selective-area etching. The depth of microchannels in Cu and Al films is increased by 3–5 μm using the proposed hybrid technique. The average surface roughness values in the microchannel are decreased compared to that of scribing in water and air. The hybrid approach of laser-based scribing combined with electrochemical etching in neutral salt solutions allows uniform channel with almost no redeposit layer and debris on the channel edges. Further, an approach wherein, an application of direct current (DC) voltage (1.2 V) between the tool and the workpiece while laser scribing of Cu and Al in salt solution was demonstrated to improve the channel depth by few micrometers. This hybrid machining technique has also resulted in a reduction in the surface oxidation near the laser-ablated zone compared to that observed in air and water-based experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call