Abstract

Germanium (Ge) is a promising material for micro- and optoelectronics to produce high speed field-effect transistors, photodetectors, light-emitting diodes and lasers. For such applications tensile-strained and/or highly n-doped Ge layers are needed. The authors have performed the formation of such layers by ion-beam sputtering of composite Sb/Ge target, deposition of thin amorphous Ge:Sb films (~200 nm thick) on different substrates (c-Si, c-Al2O3, α-SiO2) followed by pulsed laser annealing (PLA) for their crystallization and Sb dopant activation. Structural, electrical and optical characterization of Ge:Sb films was carried out using scanning electron microscopy, x-ray diffraction, micro-Raman spectroscopy, secondary ion mass spectrometry methods and by measuring sheet resistance, carrier concentration and photoluminescence. The obtained polycrystalline n-Ge:Sb layers (NSb ~ 1 at.%) are characterized by increased values of tensile strain (up to 1%) and homogenious Sb dopant distribution within layer thickness. The electrical measurements at 300 K revealed the low sheet resistance (up to 40 Ω/□) and extremely high electron concentration (up to 5.5 × 1020 cm−3) in Ge:Sb/SiO2 samples that indicated full electrical activation of Sb dopant on SiO2 substrate. The increased values of tensile strain and electron concentration of Ge:Sb films on α-SiO2 are explained by low values of thermal conductivity and thermal expansion coefficients of quartz substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.