Abstract

AbstractPulsed laser ablation has been employed to generate thin films of low density metal oxides, including nanoporous molecular sieves. An excimer laser (KrF*, 248 nm) was used to deposit molecular sieve films onto a variety of substrates including polished silicon, platinum, tantalum, titanium nitride, glass, indium-doped tin oxide, copper and Mylar. Recent results for the deposition of microporous UTD-1 and FeAPO-5 as well as mesoporous aluminosilicate MCM-41 and Nb-TMSI molecular sieve films are presented. The order (crystallinity) of the laser deposited films has been shown to be enhanced by a brief post hydrothermal treatment. A vapor phase treatment of the laser deposited FeAPO-5 films allows for increases in film crystallinity without an increase in film thickness. Hydrothermal treatment of laser deposited Nb-TMSI results in “worm hole” pore motif which is new for this composition. Silicate based molecular sieves such as UTD-1 and aluminosilicate MCM-41 require a UV-absorbing guest molecule for laser ablation giving rise to a phenomenon referred to as guest assisted laser ablation (GALA). The molecular sieve films were characterized by x-ray diffraction, scanning electron microscopy and transmission electron microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call