Abstract

Falling-liquid-film heat transfer is important to a wide variety of industrial applications, including two-phase thermosyphons, falling-film evaporators in the food industry, heat exchangers in fuel-ethanol processing, and the chemical service industry. Particularly for laminar falling films, the heat transfer increases as the film thickness decreases, hence it is desirable to keep the films as thin as possible. This paper presents a periodically-pulsed flow concept to reduce the average mass flow inside a vertical tube. The technique provides thinner films than can be achieved with continuous flow. A drainage model is adopted to predict the film thickness as a function of flow rate and location along the tube. The concept is confirmed experimentally by measuring the film thickness in real time in a circular tube using a laser-based absorption technique. A new heat-transfer-based film continuity measurement is also integrated into the optical film measurement setup. Water at ambient temperature and pressure is used for this work. Film thickness reductions of up to 60%, and liquid-film volume-flow reductions of up to 80% compared to the minimum continuous-flow film have been obtained. The time-varying film thickness profile can also be controlled to a limited extent, which may be of interest for process industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call