Abstract

In this article, we report on the use of a pulsed KrF-laser (248 nm, 20 ns) for the synthesis of single wall carbon nanotubes (SWCNTs) from the ablation of a graphite target loaded with Co/Ni catalyst, under various growth conditions. By varying the Co/Ni catalyst load of the graphite target, from 0 to 2.4 at.%, the laser synthesized SWCNTs, under a furnace temperature (Tf) of 1,100 °C, were found to be decorated by C60 buckyballs, of which the density decreases as the catalyst content is increased. The effect of the catalyst content of the laser-ablated graphite target on the produced carbon nanostructures (C60 vs. SWCNTs) was systematically investigated by means of various characterization techniques, including Raman spectroscopy, thermogravimetry, and SEM/HR-TEM microscopies. A [Co/Ni] ≥ 1.2 at.% was identified as the optimal concentration for the production of SWCNTs without any detectable presence of C60 buckyballs. Thus, under the optimal growth conditions (i.e., [Co/Ni] = 1.2 at.% and Tf = 1,100 °C), the produced SWCNTs were found to be characterized by a very narrow diameter distribution (centered on 1.2 nm) with lengths in excess of 10 μm. By increasing Tf from 900 to 1,150 °C, the diameter of the SWCNTs can be varied from ~0.9 to ~1.3 nm. This nanotube diameter variation was evidenced by Raman and UV–Vis absorption measurements, and its effect on the photoluminescence of the SWCNTs is presented and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.