Abstract

The density of vertically aligned carbon nanotube arrays is shown to vary significantly during normal growth by chemical vapor deposition and respond rapidly to changes in feedstock flux. Pulsing the feedstock gas to repeatedly stop and start nanotube growth is shown to induce density variations up to a factor of 1.6 within ca. 1-2 μm long layers, allowing the synthesis of new array architectures with distinct regions of controllable length and density variation. Z-Contrast scanning transmission electron microscopy of corresponding sections of the arrays is used to provide unambiguous measurements of these density variations. Time-resolved optical reflectivity measurements of the height and optical extinction coefficient of the growing arrays are shown to provide a real-time diagnostic of both array density and growth kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.