Abstract

Bismuth antimony telluride (Bi1−xSbx)2Te3 thermoelectric compounds were synthesized by pulse plating. Due to the large number of parameters available (pulse waveform, on/off pulse time, applied current density), this advanced form of electrodeposition allows better control of the interfacial supply and electrochemical reactions and offers effective ways to improve macroscopic properties such as adhesion and to produce crack-free hard deposits and fine-grained films with higher uniformity and lower porosity. The influence of pulse parameters (pulse time ton, cathodic current density Jc) on the stoichiometry, roughness, and crystallography of deposits was studied. The thermoelectric properties (electrical resistivity and Seebeck coefficient) of the films were measured. The results revealed that deposits have p-type conductivity directly after electroplating (Seebeck coefficient around 150 μV K−1), in contrast to films synthesized by direct current, which require annealing. An improvement of resistivity was observed: for a direct-current-deposited film the resistivity is around 5000 μΩ m, whereas for a pulse-deposited film the resistivity was around 200 μΩ m.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.