Abstract

The surface topography, chemical composition, microstructure, nanohardness, and tribological characteristics of a Cu (film, 512 nm)-stainless steel 316 (substrate) system subjected to pulsed melting by a low-energy (20–30 keV), high-current electron beam (2–3 μs, 2–10 J/cm2) were investigated. The film was deposited by sputtering a Cu target in the plasma of a microwave discharge in argon. To prevent local exfoliation of the film due to cratering, the substrate was multiply pre-irradiated with 8–10 J/cm2. On single irradiation, the bulk of the film survived, and a diffusion layer containing the film and substrate components was formed at the interface. The thickness of this layer was 120–170 nm irrespective of the energy density. The diffusion layer consisted of subgrains of γ-Fe solid solution and nanosized particles of copper. In the surface layer of thickness 0.5–1 μm, which included the copper film quenched from melt and the diffusion layer, the nanohardness and the wear resistance nonmonotonicly varied with energy density, reaching, respectively, a maximum and a minimum in the range 4.3–6.3 J/cm2. As the number of pulsed melting cycles was increased to five in the same energy density range, there occurred mixing of the film-substrate system and a surface layer of thickness ∼2 μm was formed which contained ∼20 at. % copper. Displacement of the excess copper during crystallization resulted in the formation of two-phase nanocrystal interlayers separating the γ-phase grains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call