Abstract

It is shown that the addition of molecular oxygen to the working mixture of a pulsed electron-beam sustained-discharge (EBSD) laser CO amplifier leads to the increase in the small-signal gain (SSG) at the fundamental vibrational v+1→v transitions in a CO molecule for v=6–13, which is explained by the increase in the population of vibrational levels. In this case, the temporal parameters of the dynamics decrease at all probed transitions. Variations observed in the SSG dynamics are explained by analysing the kinetic processes of vibrational—vibrational exchange between molecules. The study of lasing parameters of a pulsed CO laser showed that the threshold energy input decreased with increasing the oxygen content in the working mixture. It is found that the CO laser efficiency at fundamental transitions increases with the addition of oxygen, the maximum efficiency being achieved at lower energy inputs. It is shown that the pulsed EBSD CO laser can operate on the air working mixture both at the fundamental transitions and the first vibrational overtone transitions v+2→v.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call