Abstract

This study was designed to investigate the effects of pulsed electromagnetic fields (PEMF) on the balance of adipogenesis and osteogenesis on steroid-induced osteonecrosis of the femoral head (OFH) in rats. Forty-two rats were divided into three groups: Steroid group (S, n = 16); Steroid + PEMF group (S + P, n = 16); and Control group (C, n = 10). For groups S and S + P, all rats were first intravenously given 10 µg/kg lipopolysaccharide on day 1, and then intramuscularly injected with 20 mg/kg methylprednisolone acetate on days 2, 3, and 4, with an interval of 24 h. After 4 weeks, the S + P group was treated with PEMF (4.5-ms square pulse, repeated at 15 Hz, with a peak of 1.2 mT) for 4 h a day for the next 8 weeks. Group S was not exposed to PEMF. Group C was chosen as the control group, without steroid use and exposure to PEMF. After 8 weeks of treatment, the histological changes, and mRNA and protein expressions of PPAR-γ2 and Runx2 were measured and analyzed. Compared with the S group, lower incidence of osteonecrosis (31% vs. 69%, P < 0.05) and empty osteocyte lacuna rate (36.16 ± 15.34 vs. 59.55 ± 21.70, P < 0.01) was observed in the S + P group. Furthermore, PEMF suppressed the expressions of PPAR-γ2 and improved the expressions of Runx2 in the femoral head (P < 0.05). All data suggest that PEMF is an effective physiotherapy in the treatment of steroid-induced ONFH, and the possible underlying mechanisms include protecting the balance between adipogenesis and osteogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.