Abstract

Pulsed electromagnetic fields (PEMF) influence the extracellular matrix metabolism of a diverse range of skeletal tissues. This study focuses upon the effect of PEMF on the composition and molecular structure of cartilage proteoglycans. Sixteen-day-old embryonic chick sterna were explanted to culture and exposed to a PEMF for 3 h/day for 48 h. PEMF treatment did not affect the DNA content of explants but stimulated elevation of glycosaminoglycan content in the explant and conserved the tissue's histological integrity. The glycosaminoglycans in sterna exposed to PEMF were indistinguishable from those in controls in their composition of chondroitin sulfate resulting from chondroitinase ABC digestion. Specific examination with [35S]-sulfate labels showed that PEMF treatment significantly suppressed both the degradation of pre-existing glycosaminoglycans biosynthetically labeled in ovo and the synthesis of new [35S]-sulfated glycosaminoglycans. The average size and aggregating ability of pre-existing and newly synthesized [35S]-sulfated proteoglycans extracted with 4 M guanidinium chloride from PEMF-treated cartilage explants were identical to controls. The chain length and degree of sulfation of [35S]-sulfated glycosaminoglycans also were identical in control and PEMF-treated cultures. PEMF treatment also reduced the amount of both unlabeled glycosaminoglycans and labeled pre-existing and newly synthesized [35S]-sulfated glycosaminoglycans recovered from the nutrient media. [35S]-Sulfated proteoglycans released to the media of both control and PEMF-treated cultures were mostly degradation products although their glycosaminoglycan chain size was unchanged. These results demonstrate that exposure of embryonic chick cartilage explants to PEMF for 3 h/day maintains a balanced proteoglycan composition by down-regulating its turnover without affecting either molecular structure or function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.