Abstract

In thin film solar cells based on non-crystalline thin film silicon or organic semiconductors structural disorder leads to localized states that induce device limiting charge recombination and trapping. Both processes frequently involve paramagnetic states and become spin-dependent. In the present perspectives article we report on advanced pulsed electrically detected magnetic resonance (pEDMR) experiments for the study of spin dependent transport processes in fully processed thin film solar cells. We reflect on recent advances in pEDMR spectroscopy and demonstrate its capabilities on two different state of the art thin film solar cell concepts based on microcrystalline silicon and organic MEH-PPV:PCBM blends, recently studied at HZB. Benefiting from the increased capabilities of novel pEDMR detection schemes we were able to ascertain spin-dependent transport processes and microscopically identify paramagnetic states and their role in the charge collection mechanism of solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.