Abstract

Use of pulsed electric fields (PEFs) for inactivation of microorganisms is one of the more promising nonthermal processing methods. Inactivation of microorganisms exposed to high-voltage PEFs is related to the electromechanical instability of the cell membrane. Electric field strength and treatment time are the two most important factors involved in PEF processing. Encouraging results are reported at the laboratory level, but scaling up to the industrial level escalates the cost of the command charging power supply and of the high-speed electrical switch. In this paper, we critically review the results of earlier experimental studies on PEFs and we suggest the future work that is required in this field. Inactivation tests in viscous foods and in liquid food containing particulates must be conducted. A successful continuous PEF processing system for industrial applications has yet to be designed. The high initial cost of setting up the PEF processing system is the major obstacle confronting those who would encourage the system's industrial application. Innovative developments in high-voltage pulse technology will reduce the cost of pulse generation and will make PEF processing competitive with thermal-processing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.