Abstract
ABSTRACT We present 2D hydrodynamical simulations of hot Jupiters orbiting near the inner edge of protoplanetary discs. We systemically explore how the accretion rate at the inner disc edge is regulated by a giant planet of different mass, orbital separation, and eccentricity. We find that a massive (with planet-to-star mass ratio ≳0.003) eccentric (ep ≳ 0.1) planet drives a pulsed accretion at the inner edge of the disc, modulated at one or two times the planet’s orbital frequency. The amplitude of accretion variability generally increases with the planet mass and eccentricity, although some non-monotonic dependences are also possible. Applying our simulation results to the T Tauri system CI Tau, where a young hot Jupiter candidate has been detected, we show that the observed luminosity variability in this system can be explained by pulsed accretion driven by an eccentric giant planet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.