Abstract

We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC) pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs) could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz). The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders.

Highlights

  • Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of neuroregenerative strategies

  • The primary processes and the branches of mouse neural stem and progenitor cells (mNPCs) were clearly evident after stimulation by direct current (DC) pulses for 48 h

  • Our results showed that the electrical stimulation enhanced Tuj1, glial fibrillary acidic protein (GFAP), and O4 expression in mNPCs, indicating the differentiation into three corresponding types of cells: neurons, astrocytes, and oligodendrocytes

Read more

Summary

Introduction

Neural stem and progenitor cells (collectively termed neural precursor cells or NPCs) in the adult mammalian brain are promising candidates for the development of neuroregenerative strategies. NPCs are undifferentiated precursor cells defined by their self-renewal ability, multipotency, and proliferative capacity. NPC differentiation is controlled by the substratum and molecular mediators. Cells grown on laminin-coated slides show induced neurite extension and branching [1,2]. N-docosahexaenoylethanolamine (synaptamide), an endogenous docosahexaenoic acid metabolite with an endocannabinoid-like.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call