Abstract

In a magnetized laboratory plasma described in the companion paper [Stenzel and Urrutia, Phys. Plasmas 4, 26 (1997)], a large positive voltage step (V≫kTe/e) is applied to electrodes. The current front propagates in the whistler mode in the parameter regime of electron magnetohydrodynamics. The topology of the current density is that of nested helices. Large transient currents in excess of the electron saturation current can be drawn. A transient radial electric field associated with the current rise, excites a compressional, large amplitude, radially outgoing sound wave, which leaves the current channel depleted of plasma. The current collapses due to the density erosion. Electric field reversal excites a rarefaction wave which leads to a partial density and current recovery. Periodic plasma inflow and outflow cause the current to undergo strong relaxation oscillations at a frequency determined by the electrode diameter and the sound speed. In addition, a broad spectrum of microinstabilities is observed in regions of high current density. For drift velocities approaching the thermal speed, the spectrum extends beyond the ion plasma frequency (ωpi) up to the electron plasma frequency (ωpe). Correlation measurements above ωpi reveal modes propagating along the electron drift at speeds above the sound speed but well below the electron drift speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.