Abstract

Tissue removal by infrared lasers is accompanied by thermal damage to nonablated tissue. The extent of thermal damage can be controlled by a choice of laser wavelength, irradiance, and exposure duration. The effect of exposure duration has been studied in vivo by using CO2 lasers with pulse widths that vary from 2 microseconds to 50 msec. Pulse widths of 50 msec, typical of a shuttered, continuous-wave CO2 laser, produce damage regions 750 micron wide in normal guinea pig skin; the use of a 2-microseconds-long pulse reduced this damage zone to as little as 50 micron. Using 2-microseconds-long pulses, in vitro studies showed that the minimum zone of thermal damage varied significantly with tissue type. The thermal denaturation of these tissues has been studied and correlated with damage. The effect of denaturation temperature and pulse duration on the width of the damage zone is explained by a simple model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.